Serratia marcescens is a species of rod-shaped gram-negative bacteria in the family Enterobacteriaceae. A human pathogen, S. marcescens is involved in hospital-acquired infections (HAIs), particularly catheter-associated bacteremia, urinary tract infections and wound infections, and is responsible for 1.4% of HAI cases in the United States. It is commonly found in the respiratory and urinary tracts of hospitalized adults and in the gastrointestinal system of children. Due to its abundant presence in the environment, and its preference for damp conditions, S. marcescens is commonly found growing in bathrooms (especially on tile grout, shower corners, toilet water line, and basin), where it manifests as a pink, pink-orange, or orange discoloration and slimy film feeding off phosphorus-containing materials or fatty substances such as soap and shampoo residue.
Once established, complete eradication of the organism is often difficult, but can be accomplished by application of a bleach-based disinfectant. Rinsing and drying surfaces after use can also prevent the establishment of the bacterium by removing its food source and making the environment less hospitable.
S. marcescens may also be found in environments such as dirt, supposedly "sterile" places, and the subgingival biofilm of teeth. Due to this, and because S. marcescens produces a reddish-orange tripyrrole pigment called prodigiosin, it may cause staining of the teeth. The biochemical pathway for the production of prodigiosin by S. marcescens is unknown except for the final two steps. In these steps, a monopyrrole and a bipyrrole undergo a condensation reaction by way of an enzyme to form prodigiosin.
Video Serratia marcescens
Identification
S. marcescens is a motile organism and can grow in temperatures ranging from 5-40 °C and in pH levels ranging from 5 to 9. It is differentiated from other Gram-negative bacteria by its ability to perform casein hydrolysis, which allows it to produce extracellular metalloproteinases which are believed to function in cell-to-extracellular matrix interactions. S. marcescens also exhibits tryptophan and citrate degradation. One of the end products of tryptophan degradation is pyruvic acid, which is then incorporated into different metabolic processes of S. marcescens. A final product of citrate degradation is carbon. Thus, S. marcescens can rely on citrate as a carbon source. In identifying the organism, one may also perform a methyl red test, which determines if a microorganism performs mixed-acid fermentation. S. marcescens results in a negative test. Another determination of S. marcescens is its capability to produce lactic acid by oxidative and fermentative metabolism. Therefore, it is said that S. marcescens is lactic acid O/F+.
Maps Serratia marcescens
Pathogenicity
In humans,S. marcescens can cause an opportunistic infection in several sites, including the urinary tract, respiratory tract, wounds, and the eye, where it may cause conjunctivitis, keratitis, endophthalmitis, and tear duct infections. It is also a rare cause of endocarditis and osteomyelitis (particularly in people who use intravenous drugs recreationally), pneumonia, and meningitis. Most S. marcescens strains are resistant to several antibiotics because of the presence of R-factors, which are a type of plasmid that carry one or more genes that encode resistance; all are considered intrinsically resistant to ampicillin, macrolides, and first-generation cephalosporins (such as cephalexin).
In elkhorn coral, S. marcescens is the cause of the disease known as white pox disease. In silkworms, S. marcescens can also cause a lethal disease, especially in association with other pathogens.
In research laboratories employing Drosophila fruit flies, infection of them with S. marcescens is common. It manifests as a pink discoloration or plaque in or on larvae, pupae, or the usually starch and sugar-based food (especially when improperly prepared).
A rare clinical form of gastroenteritis occurring in early infancy caused by infection with S. marcescens. The red color of the diaper can be mistaken for hematuria (blood in the urine) which may cause unnecessary investigations by the physicians.
S. marcescens causes cucurbit yellow vine disease, leading to sometimes serious losses in melon fields.
Professor Jim Burritt and his students at the University of Wisconsin-Stout have discovered a new strain of S. marcescens in bee blood (haemolymph) from hives decimated by winterkill. His research findings have been published and the new strain was named sicaria, which means assassin in Latin. The professor states that S. marcescens sicaria "may contribute to the wintertime failure of honey bee colonies".
History
Possible role in medieval miracles
Because of its red pigmentation, caused by expression of the pigment prodigiosin, and its ability to grow on bread, S. marcescens has been evoked as a naturalistic explanation of medieval accounts of the "miraculous" appearance of blood on the Corporal of Bolsena. This followed celebration of a Mass at Bolsena in 1263, led by a Bohemian priest who had doubts concerning transubstantiation, or the turning of bread and wine into the Body and Blood of Christ during the Mass. During the Mass, the Eucharist appeared to bleed and each time the priest wiped away the blood, more would appear. This event is celebrated in a fresco in the Apostolic Palace in the Vatican City, painted by Raphael.
Discovery
S. marcescens was discovered in 1819 by Venetian pharmacist Bartolomeo Bizio, as the cause of an episode of blood-red discoloration of polenta in the city of Padua. Bizio named the organism four years later in honor of Serafino Serrati, a physicist who developed an early steamboat; the epithet marcescens (Latin for "decaying") was chosen because of the pigment's rapid deterioration (Bizio's observations led him to believe that the organism decayed into a mucilage-like substance upon reaching maturity). Serratia was later renamed Monas prodigiosus and Bacillus prodigiosus before Bizio's original name was restored in the 1920s.
Uses and misuse
Role in biowarfare testing
Until the 1950s, S. marcescens was erroneously believed to be a nonpathogenic "saprophyte", and its reddish coloration was used in school experiments to track infections. During the Cold War, it was used as a simulant in biological warfare testing by the U.S. military which studied it in field tests as a substitute for the tularemia bacterium, which was being weaponized at the time.
On 26 and 27 September 1950, the U.S. Navy conducted a secret experiment named "Operation Sea-Spray" in which some S. marcescens was released by bursting balloons of it over urban areas of the San Francisco Bay Area in California. Although the Navy later claimed the bacteria were harmless, beginning on September 29, 11 patients at a local hospital developed very rare, serious urinary tract infections, and one of these individuals, Edward J. Nevin, died. Cases of pneumonia in San Francisco also increased after S. marcescens was released. (That the simulant bacteria caused these infections and death has never been conclusively established. Nevin's son and grandson lost a lawsuit they brought against the government between 1981 and 1983, on the grounds that the government is immune, and that the chance that the sprayed bacteria caused Nevin's death was minute. The bacterium was also combined with phenol and an anthrax simulant and sprayed across south Dorset by US and UK military scientists as part of the DICE trials which ran from 1971 to 1975.
Since 1950, S. marcescens has steadily increased as a cause of human infection, with many strains resistant to multiple antibiotics. The first indications of problems with the influenza vaccine produced by Chiron Corporation in 2004 involved S. marcescens contamination.
Contaminated injectables
In early 2008, the U.S. Food and Drug Administration issued a nationwide recall of one lot of Pre-Filled Heparin Lock Flush Solution USP. The heparin IV flush syringes had been found to be contaminated with S. marcescens, which resulted in patient infections. The Centers for Disease Control and Prevention confirmed growth of S. marcescens from several unopened syringes of this product.
S. marcescens has also been linked to 19 cases in Alabama hospitals in 2011, including 10 deaths. All of the patients involved were receiving total parenteral nutrition at the time, and this is being investigated as a possible source of the outbreak.
Ground water flow tracing
Because of its ability to be grown on agar plates into even, well coloured lawns, and the existence of a phage specific to S. marscecens, it has been used to trace water flows in Karst limestone systems. Known quantities of phage are injected into a fixed point in the Karst water system and the outflow of interest are monitored by conventional small volume sampling at fixed time intervals. In the laboratory, the samples are poured onto pre-grown S. marscecens lawns and incubated. Colourless plaques in the lawns indicate the presence of phage. The method was claimed to be sensitive at very high dilutions because of the ability to detect single phage particles.
See also
- Eucharistic miracle
References
Further reading
- Hernandez Marchant R; Oyarce Rojas P; Arcaya O (1960). "The red diaper syndrome. Serratia marcescens infection". Rev Chil Pediatr (in Spanish). 31 (4): 335-9. doi:10.4067/s0370-41061960000400001. PMID 13713665.
External links
- "Serratia marcescens". NCBI Taxonomy Browser. 615.
- Type strain of Serratia marcescens at BacDive - the Bacterial Diversity Metadatabase
Source of the article : Wikipedia